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Cross-modal Retrieval
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Boys wearing 
helmets carry a 
bike up a ramp 
at a skate park.

Small children 
stand near 

bicycles at a
skate park.

A group of young 
children riding 

bikes and 
skateboards.

Children riding 
bikes and 
skateboards

Text-to-image

Image-to-text



Semantic Ambiguity
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An image or a sentence often illustrates
multiple entities and their relations.

“Small children stand near
bicycles at a skate park.”

“A group of young children
riding bikes and skateboards.”

“Boys wearing helmets carry 
a bicycle up a ramp at a skate park.”



Semantic Ambiguity
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It is impractical to manually annotate
such entities and their correspondences.

“Small children stand near
bicycles at a skate park.”

“A group of young children
riding bikes and skateboards.”

“Boys wearing helmets carry 
a bicycle up a ramp at a skate park.”

?
?
?
?



Embedding Network Architectures
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Single Cross-attention Encoder Image Encoder + Text Encoder

Small children 
stand near 

bicycles at a
skate park.

Cross-attention encoder

𝑔

𝐱 𝐲

Similarity: 𝑔(𝐱, 𝐲)

Image encoder

𝑓𝒱
Text encoder

𝑓𝒯

Small children 
stand near 

bicycles at a
skate park.

𝐱 𝐲

Similarity: 𝑠 𝑓𝒱 𝐱 , 𝑓𝒯 𝒚



Embedding Network Architectures

6

Single Cross-attention Encoder Image Encoder + Text Encoder

Similarity: 𝑔(𝐱, 𝐲) Similarity: 𝑠 𝑓𝒱 𝐱 , 𝑓𝒯 𝒚

(+) Boosting performance by fine-
grained image-text interaction

(–) Impractical for large-scale image 
retrieval due to the prohibitively 
heavy computation at inference

(+) Appropriate for large-scale image 
retrieval thanks to the simple and 
efficient similarity computation

(–) Limited performance due to the 
lack of image-text interaction



② Embedding set 
representation 
+ set similarity 
metric for 
resolving the 
ambiguity issue

① Separate encoders for efficient retrieval

Our Approach
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Image encoder

Text encoder

A toddler hitting 
the ball with a 
baseball bat in 
his backyard.



Contribution

• A new set-based embedding architecture
• Set-prediction modules based on slot attention 

• A new set similarity metric
• Smooth-Chamfer similarity

• Outstanding performance
• State of the art in most settings on four public benchmarks

• Leading to substantially less latency than cross-attention models
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Proposed Architecture
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Image feature extractor

Text feature extractor

Embedding space
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Global feature
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Proposed Architecture: Set Prediction Modules
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or

Element slots

Aggregation block

Aggregation block

Aggregation block

Aggregation block

[1] Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.

The element slots[1]

compete with each
other to aggregate
input features and
thus reveal diverse
contexts.

Local 
features 𝜓

Global
feature 𝜙



Proposed Architecture: Set Prediction Modules
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or

Element slots

Aggregation block

Aggregation block

Aggregation block

Aggregation block

[1] Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.

Local features 𝜓

Element slots 𝐄𝑡−1
(Key, Value) pairs: 𝐤, 𝐯 ∈ ℝ𝑁×𝐷ℎ

Queries: 𝐪 ∈ ℝ𝐾×𝐷ℎ

𝐴𝑛,𝑘 =
exp𝑀𝑛,𝑘

σ𝑖=1
𝐾 exp𝑀𝑛,𝑖

𝑀 =
𝐤𝐪⊤

𝐷ℎ

Computing an attention map

,  where

Normalization over the slots[1]

መ𝐴𝑛,𝑘 =
𝐴𝑛,𝑘

σ𝑖=1
𝑁 𝐴𝑛,𝑘

ത𝐄𝑡 = መ𝐴⊤𝐯𝑊𝑜 + 𝐄𝑡−1

𝐄𝑡 = MLP ത𝐄𝑡 + ത𝐄𝑡
Updating the element slots

,  where

and
Local 

features 𝜓
Global

feature 𝜙



𝐒 = LN 𝐄 + LN 𝜙 ,⋯ , LN 𝜙 ∈ ℝ𝐾×𝐷

𝐾 repetitions

Adding the global feature to each element

• Embedding the global context in every 
element of the set

• Particularly useful when treating samples 
with little ambiguity

Proposed Architecture: Set Prediction Modules
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or

Element slots

Aggregation block

Aggregation block

Aggregation block

Aggregation block

Local 
features 𝜓

Global
feature 𝜙



Set Similarity Metric: Smooth-Chamfer Similarity

13

𝑠 𝐒𝒱 , 𝐒𝒯 =
1
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Set Similarity Metric: Smooth-Chamfer Similarity
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𝑠 𝐒𝒱 , 𝐒𝒯 =
1

2𝛼 𝐒𝒱
෍

𝐞∈𝐒𝒱

LSE
𝐞′∈𝐒𝒯

𝛼 cos 𝐞, 𝐞′ +
1

2𝛼 𝐒𝒯
෍

𝐞′∈𝐒𝒯

LSE
𝐞∈𝐒𝒱

𝛼 cos 𝐞, 𝐞′

• Establishing soft
correspondences
between elements

• Improving retrieval 
performance

Chamfer similarity
(MAX instead of LSE)

Smooth-Chamfer
similarity



Training Objective

15

ℒ 𝐒𝑖
𝒱 , 𝐒𝑖

𝒯
𝑖=1

𝑁
= ℒtri 𝐒𝑖

𝒱 , 𝐒𝑖
𝒯

𝑖=1

𝑁
+ ℒmmd 𝐒𝑖

𝒱
𝑖=1

𝑁
, 𝐒𝑖

𝒯
𝑖=1

𝑁
+ℛdiv

A boy hitting the 
ball with a 

baseball bat in 
his backyard.

𝐒𝑖
𝒱

𝐒𝑖
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𝒯
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𝒯

Metric learning

Small children 
stand near 

bicycles at a
skate park.

𝐱𝑖 , 𝐲𝑖 𝐱𝑗 , 𝐲𝑗



Training Objective
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Closing the modality gap

A boy hitting the 
ball with a 

baseball bat in 
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Small children 
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bicycles at a
skate park.
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Training Objective
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Enhancing within-set diversity
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Training Objective
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Experiments

• Datasets
• COCO[3], Flickr30K[4], ECCV Caption[5], CrissCrossed Caption (CxC)[6]

• Evaluation metrics
• Recall@𝑘: Percentage of the queries that have matching samples among 

top-𝑘 retrieval results 

• RSUM: Sum of Recall@𝑘 at 𝑘 ∈ 1,5,10 in both image-to-text and text-to-
image settings

• 4 agg. blocks and 4 element slots for each set-prediction module
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[3] Lin et al., Microsoft COCO: Common Objects in Context, ECCV 2014.
[4] Plummer et al., Flickr30k Entities: Collecting Region-to-phrase Correspondences for Richer Image-to-sentence Models, ICCV 2015.
[5] Chun et al., ECCV Caption, Correcting False Negatives by Collecting Machine-and-human-verified Image-Caption Associations for

MS-COCO, ECCV 2022.
[6] Parekh et al., Crisscrossed Captions: Extended Intra-modal and Inter-modal Semantic Similarity Judgments for MS-COCO, EACL 2020.



Experiments: Performance on COCO
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Experiments: Performance on Flickr30K
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Experiments: Performance on Flickr30K
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Computation Complexity Latency in inference
lo

g(
FL

O
P

S)

VSE   [7]∞ Ours NAAF[8]

(SCAN[9])

× 16

× 1,280

La
te

n
cy

 (
m

s)

159 168

198,121

VSE   [7]∞ Ours NAAF[8]

(SCAN[9])

[7] Jiacheng et al., Learning the Best Pooling Strategy for Visual Semantic Embedding, CVPR 2021.
[8] Zhang et al., Negative-aware Attention Framework for Image-text Matching., CVPR 2022.
[9] Lee et al., Stacked Cross Attention for Image-text Matching, ECCV 2018.



Experiments : Performance on ECCV Caption and CxC

23

VSRN[10] is one of the machine annotators 
used to construct the ECCV Caption dataset.

[10] Li et al., Visual Semantic Reasoning for Image-text Matching, ICCV 2019.



Experiments: Ablation Study on Flickr30K
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Impact of set-similarity metric Impact of set-embedding architecture

[11] Song and Soleymani, Polysemous Visual Semantic Embedding for Cross-modal Retrieval, CVPR 2019.
[12] Chun et al., Probabilistic Embeddings for Cross-modal Retrieval, CVPR 2021.
[13] Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021.

[11]

[12]
[11,12]

Circular variance Var = 1 − σ𝐞∈𝐒
𝐞

𝐒 2

Our architecture results in most diverse 
embeddings and best performance.

Smooth-Chamfer similarity is 
best suited to our framework.

[13]



Experiments: Ablation Study on Flickr30K
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Contribution of each embedding element



Experiments: Qualitative Examples
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Conclusion

• Contributions
• A new set-based embedding architecture

• A new set similarity metric

• Outstanding performance on four public benchmarks

• Next on agenda
• Adopting CLIP-pretrained weights[14]

• Adopting an advanced slot attention mechanism (e.g., [15])

• Learning vision-language models with the proposed method
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[14] Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.
[15] Kim et al., Shatter and Gather: Learning Referring Image Segmentation with Text Supervision, ICCV 2023.
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