Q Children riding bikes and skateboards

Q A crowd attending a community fair

Improving Cross-modal Retrieval with Set of Diverse Embeddings

Dongwon Kim kdwon@postech.ac.kr Namyup Kim namyup@postech.ac.kr Suha Kwak suha.kwak@postech.ac.kr

Cross-modal Retrieval

Text-to-image

Image-to-text

Semantic Ambiguity

"Boys wearing <mark>helmets</mark> carry a bicycle up a ramp at a skate park."

> "Small children stand near bicycles at a skate park."

"A group of young children riding bikes and skateboards."

An image or a sentence often illustrates multiple entities and their relations.

Semantic Ambiguity

"Boys wearing pelmets carry a bicycle up a ramp at a skate park."

> "Small children stand near bicycles at a skate park."

"A group of young children riding bikes and skateboards."

It is impractical to manually annotate such entities and their correspondences.

Embedding Network Architectures

Embedding Network Architectures

Single Cross-attention Encoder

Similarity: $g(\mathbf{x}, \mathbf{y})$

(+) Boosting performance by finegrained image-text interaction

(-) Impractical for large-scale image retrieval due to the prohibitively heavy computation at inference Image Encoder + Text Encoder Similarity: $s\left(f^{\mathcal{V}}(\mathbf{x}), f^{\mathcal{T}}(\mathbf{y})\right)$

(+) Appropriate for large-scale image retrieval thanks to the simple and efficient similarity computation

(-) Limited performance due to the lack of image-text interaction

Our Approach

2 Embedding set
 representation
 + set similarity
 metric for
 resolving the
 ambiguity issue

① Separate encoders for efficient retrieval

Contribution

- A new set-based embedding architecture
 - Set-prediction modules based on slot attention
- A new set similarity metric
 - Smooth-Chamfer similarity
- Outstanding performance
 - State of the art in most settings on four public benchmarks
 - Leading to substantially less latency than cross-attention models

Proposed Architecture

Proposed Architecture: Set Prediction Modules

The element slots^[1] compete with each other to aggregate input features and thus reveal diverse contexts.

[1] Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.

Proposed Architecture: Set Prediction Modules

Local features $\psi \rightarrow$ (Key, Value) pairs: $\mathbf{k}, \mathbf{v} \in \mathbb{R}^{N \times D_h}$ Element slots $\mathbf{E}^{t-1} \rightarrow \text{Queries}: \mathbf{q} \in \mathbb{R}^{K \times D_h}$ Computing an attention map $A_{n,k} = \frac{\exp M_{n,k}}{\sum_{i=1}^{K} \exp M_{n,i}}, \text{ where } M = \frac{\mathbf{kq}}{\sqrt{D_h}}$ Normalization over the slots^[1] Updating the element slots $\mathbf{E}^{t} = \mathrm{MLP}(\overline{\mathbf{E}}^{t}) + \overline{\mathbf{E}}^{t}$, where $\overline{\mathbf{E}}^{t} = \hat{A}^{\mathsf{T}} \mathbf{v} W_{o} + \mathbf{E}^{t-1} \text{ and } \hat{A}_{n,k} = \frac{A_{n,k}}{\sum_{i=1}^{N} A_{n,k}}$

[1] Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.

Proposed Architecture: Set Prediction Modules

- Embedding the global context in every element of the set
- Particularly useful when treating samples with little ambiguity

Set Similarity Metric: Smooth-Chamfer Similarity

$$s(\mathbf{S}^{\mathcal{V}}, \mathbf{S}^{\mathcal{T}}) = \frac{1}{2\alpha |\mathbf{S}^{\mathcal{V}}|} \sum_{\mathbf{e} \in \mathbf{S}^{\mathcal{V}}} \underset{\mathbf{e}' \in \mathbf{S}^{\mathcal{T}}}{\mathsf{LSE}} \left(\alpha \cos(\mathbf{e}, \mathbf{e}') \right) + \frac{1}{2\alpha |\mathbf{S}^{\mathcal{T}}|} \sum_{\mathbf{e}' \in \mathbf{S}^{\mathcal{T}}} \underset{\mathbf{e} \in \mathbf{S}^{\mathcal{V}}}{\mathsf{LSE}} \left(\alpha \cos(\mathbf{e}, \mathbf{e}') \right)$$
$$\log\left(\sum_{y \in \mathbf{S}_{2}} \exp[\alpha \cos(x, y)]\right) \qquad \log\left(\sum_{x \in \mathbf{S}_{1}} \exp[\alpha \cos(x, y)]\right)$$

Set Similarity Metric: Smooth-Chamfer Similarity

$$s(\mathbf{S}^{\mathcal{V}}, \mathbf{S}^{\mathcal{T}}) = \frac{1}{2\alpha |\mathbf{S}^{\mathcal{V}}|} \sum_{\mathbf{e} \in \mathbf{S}^{\mathcal{V}}} \underset{\mathbf{e}' \in \mathbf{S}^{\mathcal{T}}}{\mathsf{LSE}} \left(\alpha \cos(\mathbf{e}, \mathbf{e}') \right) + \frac{1}{2\alpha |\mathbf{S}^{\mathcal{T}}|} \sum_{\mathbf{e}' \in \mathbf{S}^{\mathcal{T}}} \underset{\mathbf{e} \in \mathbf{S}^{\mathcal{V}}}{\mathsf{LSE}} \left(\alpha \cos(\mathbf{e}, \mathbf{e}') \right)$$

Chamfer similarity (MAX instead of LSE)

Smooth-Chamfer similarity

- Establishing *soft correspondences between elements*
- Improving retrieval performance

$$\mathcal{L}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathcal{L}_{\mathrm{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{R}_{\mathrm{div}}$$

Metric learning

Closing the modality gap

$$\mathcal{L}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}, \mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathcal{L}_{\mathrm{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}, \mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N}, \left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{R}_{\mathrm{div}}$$

Enhancing within-set diversity

$$\mathcal{L}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}, \mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathcal{L}_{\mathrm{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}, \mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N}, \left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{R}_{\mathrm{div}}$$

Triplet rank loss with hard negative mining

$$\mathcal{L}_{\mathrm{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \sum_{i=1}^{N} \max_{j} \left[\delta + s\left(\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{j}^{\mathcal{T}}\right) - s\left(\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right)\right]_{+} + \sum_{i=1}^{N} \max_{j} \left[\delta + s\left(\mathbf{S}_{i}^{\mathcal{T}},\mathbf{S}_{j}^{\mathcal{V}}\right) - s\left(\mathbf{S}_{i}^{\mathcal{T}},\mathbf{S}_{j}^{\mathcal{V}}\right)\right]_{+}$$

$$\mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathrm{MMD}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right)$$

Diversity regularizer

$$\mathcal{R}_{\text{div}} = \sum_{e,e' \in \mathbf{E}} \exp(-2\|e - e'\|_2^2)$$

[2] Gretton et al., A Kernel Two-sample Test, JMLR 2012.

Experiments

- Datasets
 - COCO^[3], Flickr30K^[4], ECCV Caption^[5], CrissCrossed Caption (CxC)^[6]
- Evaluation metrics
 - Recall@k: Percentage of the queries that have matching samples among top-k retrieval results
 - RSUM: Sum of Recall@k at $k \in \{1,5,10\}$ in both image-to-text and text-to-image settings
- 4 agg. blocks and 4 element slots for each set-prediction module
- [3] Lin et al., Microsoft COCO: Common Objects in Context, ECCV 2014.
- [4] Plummer et al., Flickr30k Entities: Collecting Region-to-phrase Correspondences for Richer Image-to-sentence Models, ICCV 2015.
- [5] Chun *et al.*, ECCV Caption, Correcting False Negatives by Collecting Machine-and-human-verified Image-Caption Associations for MS-COCO, ECCV 2022.
- [6] Parekh et al., Crisscrossed Captions: Extended Intra-modal and Inter-modal Semantic Similarity Judgments for MS-COCO, EACL 2020. 19

Experiments: Performance on COCO

		1K Test Images							5K Test Images						
		Image-to-Text		Te	ext-to-Im	age	DSIM	Image-to-Text			Te	ext-to-Im	age		
Method	CA	R@1	R@5	R@10	R@1	R@5	R@10	KSUM	R@1	R@5	R@10	R@1	R@5	R@10	KSUM
ResNet-152 + Bi-GRU															
VSE++	×	64.6	90.0	95.7	52.0	84.3	92.0	478.6	41.3	71.1	81.2	30.3	59.4	72.4	355.7
PVSE	×	69.2	91.6	96.6	55.2	86.5	93.7	492.8	45.2	74.3	84.5	32.4	63.0	75.0	374.4
PCME	×	68.8	-	-	54.6	-	-	-	44.2	-	-	31.9	-	-	-
Ours	X	70.3	91.5	96.3	56.0	85.8	93.3	493.2	47.2	74.8	84.1	33.8	63.1	74.7	377.7
Faster R-C	NN + B	i-GRU													
$SCAN^{\dagger}$	 ✓ 	72.7	94.8	98.4	58.8	88.4	94.8	507.9	50.4	82.2	90.0	38.6	69.3	80.4	410.9
$VSRN^{\dagger}$	×	76.2	94.8	98.2	62.8	89.7	95.1	516.8	53.0	81.1	89.4	40.5	70.6	81.1	415.7
CAAN	 ✓ 	75.5	95.4	98.5	61.3	89.7	95.2	515.6	52.5	83.3	90.9	41.2	70.3	82.9	421.1
$IMRAM^{\dagger}$	 ✓ 	76.7	95.6	98.5	61.7	89.1	95.0	516.6	53.7	83.2	91.0	39.7	69.1	79.8	416.5
${ m SGRAF}^\dagger$	 ✓ 	79.6	96.2	98.5	63.2	90.7	96.1	524.3	57.8	-	91.6	41.9	-	81.3	-
VSE_{∞}	×	78.5	96.0	98.7	61.7	90.3	95.6	520.8	56.6	83.6	91.4	39.3	69.9	81.1	421.9
$NAAF^{\dagger}$	 ✓ 	80.5	96.5	98.8	64.1	90.7	96.5	527.2	58.9	85.2	92.0	42.5	70.9	81.4	430.9
Ours	X	79.8	96.2	98.6	63.6	90.7	95.7	524.6	58.8	84.9	91.5	41.1	72.0	82.4	430.7
Ours [†]	×	80.6	96.3	98.8	64.7	91.4	96.2	528.0	60.4	86.2	92.4	42.6	73.1	83.1	437.8
ResNeXt-10	ResNeXt-101 + BERT														
VSE_{∞}	×	84.5	98.1	99.4	72.0	93.9	97.5	545.4	66.4	89.3	94.6	51.6	79.3	87.6	468.9
VSE_{∞}^{\dagger}	×	85.6	98.0	99.4	73.1	94.3	97.7	548.1	68.1	90.2	95.2	52.7	80.2	88.3	474.8
Ours	X	86.3	97.8	99.4	72.4	94.0	97.6	547.5	69.1	90.7	95.6	52.1	79.6	87.8	474.9
Ours [†]	X	86.6	98.2	99.4	73.4	94.5	97.8	549.9	71.0	91.8	96.3	53.4	80.9	88.6	482.0

Experiments: Performance on Flickr30K

Mathad		In	nage-to-1	text	Te	DCUM						
Method		R@1	R@5	R@10	R@1	R@5	R@10					
ResNet-152 + Bi-GRU												
VSE++	×	52.9	80.5	87.2	39.6	70.1	79.5	409.8				
PVSE*	X	59.1	84.5	91.0	43.4	73.1	81.5	432.6				
PCME*	X	58.5	81.4	89.3	44.3	72.7	81.9	428.1				
Ours	×	61.8	85.5	91.1	46.1	74.8	83.3	442.6				
Faster R-CNN + Bi-GRU												
\mathbf{SCAN}^{\dagger}		67.4	90.3	95.8	48.6	77.7	85.2	465.0				
\mathbf{VSRN}^\dagger	X	71.3	90.6	96.0	54.7	81.8	88.2	482.6				
CAAN	 ✓ 	70.1	91.6	97.2	52.8	79.0	87.9	478.6				
$IMRAM^{\dagger}$	1	74.1	93.0	96.6	53.9	79.4	87.2	484.2				
${ m SGRAF}^\dagger$	1	77.8	94.1	97.4	58.5	83.0	88.8	499.6				
VSE_{∞}	X	76.5	94.2	97.7	56.4	83.4	89.9	498.1				
$NAAF^{\dagger}$	1	81.9	96.1	98.3	61.0	85.3	90.6	513.2				
Ours	X	77.8	94.0	97.5	57.5	84.0	90.0	500.8				
Ours [†]	×	80.9	94.7	97.6	59.4	85.6	91.1	509.3				

ResNeXt-101 + BERT

VSE_{∞}	X	88.4	98.3	99.5	74.2	93.7	96.8	550.9
$\mathrm{VSE}_\infty^\dagger$	X	88.7	98.9	99.8	76.1	94.5	97.1	555.1
Ours	X	88.8	98.5	99.6	74.3	94.0	96.7	551.9
Ours [†]	×	90.6	99.0	99.6	75.9	94.7	97.3	557.1

Experiments: Performance on Flickr30K

[7] Jiacheng *et al.*, Learning the Best Pooling Strategy for Visual Semantic Embedding, CVPR 2021.[8] Zhang *et al.*, Negative-aware Attention Framework for Image-text Matching., CVPR 2022.

[9] Lee et al., Stacked Cross Attention for Image-text Matching, ECCV 2018.

Experiments : Performance on ECCV Caption and CxC

	In	nage-to	o-text		Text-to-image					
	ECCV	Capti	on	CxC	ECCV	CxC				
	mAP@R	R-P	R@1	R@1	mAP@R	R-P	R@ 1	R@1		
VSRN	30.8	42.9	73.8	55.1	53.8	60.8	89.2	42.6		
VSE_{∞}	<u>34.8</u>	<u>45.4</u>	<u>81.1</u>	<u>67.9</u>	50.0	57.5	91.8	<u>53.7</u>		
Ours	36.0	46.4	84.7	72.3	51.0	<u>58.5</u>	<u>91.6</u>	55.5		

VSRN^[10] is one of the machine annotators used to construct the ECCV Caption dataset.

[10] Li et al., Visual Semantic Reasoning for Image-text Matching, ICCV 2019.

Experiments: Ablation Study on Flickr30K

Similarity	Arch.	RSUM
MIL ^[11]	Ours	491.7
MP ^[12]	Ours	490.5
Ours (Chamfer)	Ours	499.6
Ours (S-Chamfer)	PIE-Net	483.3
Ours (S-Chamfer)	Ours	500.8

Impact of set-similarity metric

Smooth-Chamfer similarity is best suited to our framework.

Setting	log(Var.)	RSUM
PIE-Net ^[11,12]	-7.35	483.3
Ours $\setminus w MP$	-5.27	490.5
Transformer ^{[13}] -2.27	496.1
Ours	-2.13	500.8

Impact of set-embedding architecture

Our architecture results in most diverse embeddings and best performance.

Circular variance Var =
$$1 - \left\|\sum_{e \in S} \frac{e}{|S|}\right\|_2$$

[11] Song and Soleymani, Polysemous Visual Semantic Embedding for Cross-modal Retrieval, CVPR 2019.

[12] Chun et al., Probabilistic Embeddings for Cross-modal Retrieval, CVPR 2021.

[13] Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021.

Experiments: Ablation Study on Flickr30K

$\mathbf{S}^{\mathcal{V}}(1)$	Evalu $\mathbf{S}^{\mathcal{V}}(2)$	ation $\mathbf{S}^{\mathcal{V}}(3)$	$\mathbf{S}^{\mathcal{V}}(4)$	RSUM	$\mathbf{S}^{\mathcal{T}}(1)$	Eval $\mathbf{S}^{\mathcal{T}}(2)$	uation $\mathbf{S}^{\mathcal{T}}(3)$	$\mathbf{S}^{\mathcal{T}}(4)$	RSUM
✓ ✓	✓ ✓	√	✓	500.8 491.1 309.6	✓ ✓	✓ ✓	✓	✓	500.8 481.9 483.0
		1	1	484.9 486.0			1	✓	481.7 497.2

Contribution of each embedding element

Experiments: Qualitative Examples

R1: Picture of an outdoor place that is very beautiful.

R1: An old coutnry <u>store</u> has a display of stuffed animals <u>outside</u>.

R1: A park is *full of patrons* on a fall day.

R1: A country store with several <u>teddy</u> <u>bears and geese</u> there.

R1: Here is a soul in the image alone.

R1: A man in <u>a robe</u> eating <u>a chocolate donut</u>.

R1: A hairy man eating a chocolate doughnut *in his house*.

R1: <u>A man is holding</u> a chocolate dessert in his hand as he stares ahead.

Conclusion

- Contributions
 - A new set-based embedding architecture
 - A new set similarity metric
 - Outstanding performance on four public benchmarks
- Next on agenda
 - Adopting CLIP-pretrained weights^[14]
 - Adopting an advanced slot attention mechanism (*e.g.*, [15])
 - Learning vision-language models with the proposed method

[14] Radford *et al.*, Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.[15] Kim *et al.*, Shatter and Gather: Learning Referring Image Segmentation with Text Supervision, ICCV 2023.

References

[1] Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.

- [2] Gretton *et al.*, A Kernel Two-sample Test, JMLR 2012.
- [3] Lin *et al.*, Microsoft COCO: Common Objects in Context, ECCV 2014.
- [4] Plummer *et al.*, Flickr30k Entities: Collecting Region-to-phrase Correspondences for Richer Image-to-sentence Models, ICCV 2015.
- [5] Chun *et al.*, ECCV Caption, Correcting False Negatives by Collecting Machine-and-human-verified Image-Caption Associations for MS-COCO, ECCV 2022.
- [6] Parekh et al., Crisscrossed Captions, EACL 2020.
- [7] Jiacheng *et al.*, Learning the Best Pooling Strategy for Visual Semantic Embedding, CVPR 2021.
- [8] Zhang et al., Negative-aware Attention Framework for Image-text Matching., CVPR 2022.
- [9] Lee et al., Stacked Cross Attention for Image-text Matching, ECCV 2018.
- [10] Li et al., Visual Semantic Reasoning for Image-text Matching, ICCV 2019.
- [11] Song and Soleymani, Polysemous Visual Semantic Embedding for Cross-modal Retrieval, CVPR 2019.
- [12] Chun et al., Probabilistic Embeddings for Cross-modal Retrieval, CVPR 2021.
- [13] Dosovitskiy *et al.*, An Image is Worth 16x16 Words, ICLR 2021.
- [14] Radford *et al.*, Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.
- [15] Kim et al., Shatter and Gather: Learning Referring Image Segmentation with Text Supervision, ICCV 2023.

