

Proxy Anchor Loss for Deep Metric Learning

Sungyeon Kim Dongwon Kim Minsu Cho Suha Kwak

{tjddus9597, kdwon, mscho, suha.kwak}@postech.ac.kr

Metric Learning

How much similar/dissimilar semantically?

Metric: Function that quantifies a distance Metric Learning: Learning a metric from a set of data

Applications

Content-based image retrieval

Face verification/identification^[1]

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015

Applications

Person re-identification^[2]

Patch matching/stereo imaging^[3]

[2] Beyond triplet loss: a deep quadruplet network for person re-identification, CVPR 2017[3] Learning to compare image patches via convolutional neural networks, CVPR 2015

Deep Metric Learning

Learning a deep embedding network f so that semantically similar images are closely grouped together

Distance = Semantic dissimilarity

 \mathbf{X}_{i}

 \mathbf{X}_k

 $f(\mathbf{x}_k)$ --

This quality of the embedding space is mainly determined by **loss functions** used for training the network.

Examples of Metric Learning Losses

• Triplet rank loss^[1]

$$\ell_{\rm tri}(a,p,n) = \left[D(f_a,f_p) - D(f_a,f_n) + \delta \right]_+$$

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015

Examples of Metric Learning Losses

• Proxy NCA loss^[6]

$$\ell_{\text{proxyNCA}}(B) = \sum_{i \in B} \left\{ D(f_i, p^+) - \log \sum_{p^- \in P^-} \exp\left(-D(f_i, p^-)\right) \right\}$$

[6] No fuss distance metric learning using proxies, ICCV 2017

Two Categories of Existing Losses

- Pair-based losses
 - (+) Exploiting *data-to-data relations*, fine-grained relations between data
 - (–) Prohibitively high training complexity
 - Examples
 - Contrastive loss^[4]

$$\ell_{\rm ctr}(i,j) = y_{ij} D(f_i, f_j)^2 + (1 - y_{ij}) [\delta - D(f_i, f_j)]_+^2$$

• Triplet rank loss^[1]

$$\ell_{\rm tri}(a,p,n) = \left[D(f_a,f_p) - D(f_a,f_n) + \delta \right]_+$$

• N-pair loss^[5]

$$\ell_{\rm NP}(a, p, n_1, \dots, n_{N-1}) = \log\left(1 + \sum_{i=1}^{N-1} \exp\left(D(f_a, f_p) - D(f_a, f_{n_i})\right)\right)$$

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015[4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005[5] Improved deep metric learning with multi-class N-pair loss objective, NeurIPS 2016

Two Categories of Existing Losses

- Proxy-based losses
 - Proxy
 - Representative of a subset of training data
 - Learned as a part of the network parameters
 - Taking each data point as an anchor and associating it with proxies
 - (+) Lower training complexity, faster convergence in general
 - (+) More robust against label noises and outliers
 - (–) Leveraging impoverished data-to-proxy relations only
 - Example: Proxy-NCA loss^[6]

$$\ell_{\text{proxyNCA}}(B) = -\sum_{i \in B} \log \frac{\exp(-D(f_i, p^+))}{\sum_{p^- \in P^-} \exp(-D(f_i, p^-))}$$

Two Categories of Existing Losses

"Data-to-data relations" *Rich and fine-grained Demanding high training complexity* Proxy-based losses

"Data-to-proxy relations" *Reducing training complexity Impoverished information*

Our Method

- A new proxy-based loss called proxy anchor loss
 - Taking only advantages of both categories
 - Overcoming their limitations
- How it works
 - Using a proxy as an anchor, and associating it with all data in a batch
 - Fast convergence thanks to the use of proxies
 - Taking data-to-data relations into account by allowing data points to interact with each other during training
- Results
 - State-of-the-art performance
 - Fastest convergence (on the Cars-196 dataset)

Our Method

Recall@1 vs. training epochs on the Cars-196 dataset

Details of Proxy Anchor Loss

• Mathematical form and its interpretation

$$\ell(B) = \frac{1}{|P^+|} \sum_{p \in P^+} \log\left(1 + \sum_{i \in B_p^+} \exp\left[-\alpha(S(f_i, p) - \delta)\right]\right)$$
$$+ \frac{1}{|P|} \sum_{p \in P} \log\left(1 + \sum_{j \in B_p^-} \exp\left[\alpha(S(f_j, p) + \delta)\right]\right)$$

$$= \frac{1}{|P^+|} \sum_{p \in P^+} \left[\text{SoftPlus} \left(\underset{i \in B_p^+}{\text{LSE}} - \alpha(S(f_i, p) - \delta) \right) \right] \\ + \frac{1}{|P|} \sum_{p \in P} \left[\text{SoftPlus} \left(\underset{j \in B_p^-}{\text{LSE}} \alpha(S(f_j, p) + \delta) \right) \right]$$

S(·,·) Cosine similarity

SoftPlus A smooth approx. of ReLU

LSE

A smooth approx. of MAX

Details of Proxy Anchor Loss

• Mathematical form and its interpretation

$$\ell(B) = \frac{1}{|P^+|} \sum_{p \in P^+} \left[\text{SoftPlus} \left(\frac{\text{LSE}}{i \in B_p^+} - \alpha(S(f_i, p) - \delta) \right) \right] \\ + \frac{1}{|P|} \sum_{p \in P} \left[\text{SoftPlus} \left(\frac{\text{LSE}}{i \in B_p^-} \alpha(S(f_j, p) + \delta) \right) \right]$$

Regarding LSE as MAX: pull p and its hardest positive example together, push p and its hardest negative example apart.

In practice pull/push all embedding vectors in the batch, but with different degrees of strength determined by their relative hardness.

Details of Proxy Anchor Loss

• Analysis on its gradients

$$\frac{\partial \ell(B)}{\partial S(f_i, p)} = \begin{cases} \frac{1}{|P^+|} \frac{-\alpha h_p^+(f_i)}{1 + \sum_{j \in B_p^+} h_p^+(f_j)}, & \forall i \in B_p^+, \\ \frac{1}{|P|} \frac{\alpha h_p^-(f_i)}{1 + \sum_{k \in B_p^-} h_p^-(f_k)}, & \forall i \in B_p^-, \end{cases}$$
where

 $h_p^+(f) = \exp[-\alpha(S(f,p) - \delta)]$: Positive hardness metric $h_p^-(f) = \exp[\alpha(S(f,p) + \delta)]$: Negative hardness metric

The gradient w.r.t. f_i is affected by other examples in the batch. (The gradient becomes larger when f_i is harder than others.)

Comparison to Proxy NCA

Uniform scale for all gradients

Scales weighted by relative hardness

In the case of negative examples

Proxy NCA

Pushing only a small number of data with uniform strength

Proxy Anchor

Pushing all data with consideration of their distribution

Complexity Analysis

Туре	Loss	Training Complexity		The same complexity, but			
Proxy	Proxy Anchor	O(MC)	Η,	Proxy Anchor converges			
	Proxy NCA ^[6]	<i>O</i> (<i>MC</i>) -		faster & performs better			
	SoftTriplet ^[8]	$O(MCU^2)$		hardness of data.			
Pair	Contrastive ^[4]	$O(M^2)$					
	Triplet ^[1]	$O(M^3)$		M: # of data			
	N-pair ^[5]	$O(M^3)$		C: # of classes ($C \ll M$)			
	Lifted Structure ^[7]	$O(M^3)$		U: # of proxies per class			

- [1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015
- [4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005
- [5] Improved deep metric learning with multi-class N-pair loss objective, NeurIPS 2016
- [6] No fuss distance metric learning using proxies, ICCV 2017
- [7] Deep metric learning via lifted structured feature embedding, CVPR 2016
- [8] Softtriple loss: Deep metric learning without triplet sampling, ICCV 2019

- Evaluation on the 4 image retrieval benchmarks
 - Caltech-UCSD Bird 200 (CUB-200-2011)
 - Cars-196
 - Stanford Online Product (SOP)
 - In-Shop Clothes Retrieval (In-Shop)
- Proxy setting: 1 proxy per class
- Image setting
 - Default: 224 X 224 (as in most previous work)
 - Larger: 256 X 256 (for comparison to HORDE^[9])
- Hyper-parameters: $\alpha = 32, \delta = 10^{-1}$

• Quantitative results on the CUB-200-2011 and Cars-196

		CUB-200-2011			Cars-196				
Recall@K		1	2	4	8	1	2	4	8
Clustering ⁶⁴	BN	48.2	61.4	71.8	81.9	58.1	70.6	80.3	87.8
Proxy-NCA ⁶⁴	BN	49.2	61.9	67.9	72.4	73.2	82.4	86.4	87.8
Smart Mining ⁶⁴	G	49.8	62.3	74.1	83.3	64.7	76.2	84.2	90.2
MS^{64}	BN	57.4	69.8	80.0	87.8	77.3	85.3	90.5	94.2
SoftTriple ⁶⁴	BN	<u>60.1</u>	71.9	<u>81.2</u>	<u>88.5</u>	<u>78.6</u>	86.6	<u>91.8</u>	<u>95.4</u>
Proxy-Anchor ⁶⁴	BN	61.7	73.0	81.8	88.8	78.8	87.0	92.2	95.5
Margin ¹²⁸	R50	63.6	74.4	83.1	90.0	79.6	86.5	91.9	95.1
HDC^{384}	G	53.6	65.7	77.0	85.6	73.7	83.2	89.5	93.8
$A-BIER^{512}$	G	57.5	68.7	78.3	86.2	82.0	89.0	93.2	96.1
ABE^{512}	G	60.6	71.5	79.8	87.4	85.2	90.5	94.0	96.1
HTL^{512}	BN	57.1	68.8	78.7	86.5	81.4	88.0	92.7	95.7
$RLL-H^{512}$	BN	57.4	69.7	79.2	86.9	74.0	83.6	90.1	94.1
MS^{512}	BN	65.7	77.0	86.3	91.2	84.1	90.4	94.0	96.5
SoftTriple ⁵¹²	BN	65.4	76.4	84.5	90.4	84.5	<u>90.7</u>	<u>94.5</u>	<u>96.9</u>
Proxy-Anchor ⁵¹²	BN	68.4	79.2	86.8	91.6	86.1	91.7	95.0	97.3
[†] Contra+HORDE ⁵¹²	BN	66.3	76.7	84.7	90.6	83.9	90.3	94.1	96.3
[†] Proxy-Anchor ⁵¹²	BN	71.1	80.4	87.4	92.5	88.3	93.1	95.7	97.5

• Quantitative results on the SOP (*left*) and In-Shop (*right*)

Recall@K	1	10	100	1000
Clustering ⁶⁴	67.0	83.7	93.2	-
Proxy-NCA ⁶⁴	73.7	-	-	-
MS^{64}	74.1	87.8	94.7	98.2
SoftTriple ⁶⁴	<u>76.3</u>	89.1	95.3	-
Proxy-Anchor ⁶⁴	76.5	<u>89.0</u>	<u>95.1</u>	98.2
Margin ¹²⁸	72.7	86.2	93.8	98.0
HDC^{384}	69.5	84.4	92.8	97.7
A-BIER ⁵¹²	74.2	86.9	94.0	97.8
ABE^{512}	76.3	88.4	94.8	98.2
HTL^{512}	74.8	88.3	94.8	98.4
$RLL-H^{512}$	76.1	89.1	95.4	-
MS^{512}	78.2	<u>90.5</u>	<u>96.0</u>	98.7
SoftTriple ⁵¹²	78.3	90.3	95.9	-
Proxy-Anchor ⁵¹²	79.1	90.8	96.2	98.7
[†] Contra+HORDE ⁵¹²	80.1	91.3	96.2	98.7
[†] Proxy-Anchor ⁵¹²	80.3	91.4	96.4	98.7

Recall@K	1	10	20	40
HDC^{384}	62.1	84.9	89.0	92.3
HTL^{128}	80.9	94.3	95.8	97.4
MS^{128}	<u>88.0</u>	<u>97.2</u>	<u>98.1</u>	<u>98.7</u>
Proxy-Anchor ¹²⁸	90.8	97.9	98.5	99.0
FashionNet ⁴⁰⁹⁶	53.0	73.0	76.0	79.0
A -BIER 512	83.1	95.1	96.9	97.8
ABE^{512}	87.3	96.7	97.9	98.5
MS^{512}	<u>89.7</u>	<u>97.9</u>	<u>98.5</u>	<u>99.1</u>
Proxy-Anchor ⁵¹²	91.5	98.1	98.8	99.1
[†] Contra+HORDE ⁵¹²	90.4	97.8	98.4	98.9
[†] Proxy-Anchor ⁵¹²	92.6	98.3	98.9	99.3

Our method achieves state-of-the-art performance in almost all settings on the all 4 benchmarks.

• Qualitative results: Top 4 retrievals

CUB-200-2011

Cars-196

• Qualitative results: Top 4 retrievals

SOP

In-Shop

• Impact of hyper-parameters

The performance is stable and high enough when the embedding dimension \geq 128 and $\alpha \geq$ 16.

• Ablation studies

Network	Image Size	CUB-200-2011			Cars-196				
		R@1	R@2	R@4	R@8	R@ 1	R@2	R@ 4	R@8
GoogleNet	224×224	63.8	74.4	83.6	90.4	84.3	90.4	94.1	96.7
Inception-BN		68.4	79.2	86.8	91.6	86.1	91.7	95.0	97.3
ResNet-50		69.7	80.0	87.0	92.4	87.7	92.9	95.8	97.9
ResNet-101		70.8	81.0	88.1	93.0	87.9	93.0	96.1	97.9
Inception-BN	256×256	71.1	80.4	87.4	92.5	88.3	93.1	95.7	97.5
	324×324	74.0	82.9	88.9	93.2	91.1	94.9	96.9	98.3
	448×448	77.3	85.6	91.1	94.2	92.9	96.1	97.7	98.7

Strong backbone and large input improve performance.

Conclusion

- Contributions
 - A new metric learning loss based on proxy
 - State-of-the-art performance
 - Fastest convergence
- Future directions
 - Analysis on generalizability
 - Improving test time efficiency

References

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015

- [2] Beyond triplet loss: A deep quadruplet network for person re-identification, CVPR 2017
- [3] Learning to compare image patches via convolutional neural networks, CVPR 2015
- [4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005
- [5] Improved deep metric learning with multi-class N-pair loss objective, NeurIPS 2016
- [6] No fuss distance metric learning using proxies, ICCV 2017
- [7] Deep metric learning via lifted structured feature embedding, CVPR 2016
- [8] Softtriple loss: Deep metric learning without triplet sampling, ICCV 2019
- [9] High-order regularizer for deep embeddings, ICCV 2019

