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Metric Learning

How much similar/dissimilar?

Metric: Function that quantifies a distance

Metric Learning: Learning a metric from a set of data



Deep Metric Learning

D (f(x1)lx f(Xz))

D (f(X1)I» f(X3))

Pairwise relation Triplet relation

D(f1,12) L, D(f1,f3) 1 D(f1, f2) < D(f1, f3)

Deep Metric Learning
Learning a deep neural net f that satisfies the relations
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Applications

39/
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Content-based image retrieval Face verification/identification!!]

_

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015



Applications

similarity

decision network

ConvNet

patch 1 patch 2

Person re-identification!? Patch matching/stereo imaging!®

[2] Beyond triplet loss: a deep quadruplet network for person re-identification, CVPR 2017
[3] Learning to compare image patches via convolutional neural networks, CVPR 2015 5



Existing Approaches

* Contrastive loss for Siamese networks!*
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[4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005 6



Existing Approaches

* Triplet rank loss for triplet networks!!

tila,p,n) = [D(fa» fp) — D(fo, fr) + 5]_'_
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[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015



Existing Approaches

e A common issue

 Existing (deep) metric learning approaches rely on binary relations
between images: “same” or “not”.

Content-based image retrieval Person re-identification



Existing Approaches

e A common issue

 However, relations between real world images are not binary but often
represented as continuous similarities.
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Existing Approaches

* Conventional approaches to handle the issue
e Existing metric learning loss + similarity quantization

Binary thresholding"! Anchor Wl |
Populations of positive and ® —0-0—0-0>
negative examples would be o1
significantly imbalanced.
00009 >
Nearest neighbor search!®! Anchor | Neighbors |
Positive neighbors of a rare ® o-0—0-0>
example would be dissimilar and - —BH—B B b—
negative neighbors of a common
B B B >

example would be too similar.

[5] Pose embeddings: A deep architecture for learning to match human poses, arXiv 2015
[6] Thin-slicing for pose: Learning to understand pose without explicit pose estimation, CVPR 2016 10



Existing Approaches

* Conventional approaches to handle the issue

* Degree of similarity is ignored in the learned embedding space.
Anchor Neighbors
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Our Approach

e Qur goal

e Learning a metric space that reflects the degree of similarity directly
Anchor Neighbors
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Our Approach

e Qur goal
e Learning a metric space that reflects the degree of similarity directly

* Contributions
* A new triplet loss: Log-ratio loss
* A new triplet sampling technique: Dense triplet sampling

* Various applications
* Human pose retrieval
e Room layout retrieval
e Caption-aware image retrieval
e Representation learning for image captioning
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Log-ratio Loss

e Definition

Dy(ya'yi)\
8
Dy(ya’yj)}

where f; = f(X;) is the embedding vector of image I,
and D(-) denotes the squared Euclidean distance.

"

fi(a,i,]) = Jlog [ /5~ lo

The distance between two images in the learned metric space
will be proportional to their distance in the label space.
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* Analysis on its gradients

0ty(a,i,j)  0by(a,ij) 04y(aij) Direction between
of, f; of; the anchor and neighbors
04 (a,i,j | — .
lr(,()a L)) = grl Ja) -A1.(a,i,)) Discrepancy between
Ji (fa. fi) the label distance ratio and
0¢,.(a, i, — f. the embedding distance ratio
lr( ]) . (fa f]) . ﬂr(a; i,j)

ofi  D(fuf) Do f) Dy yo)

441 -
OgD(fa'fj) OgDy(ya'yj)
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Log-ratio loss

DUt .,
D(fa'fj) D(ya'yj)

aflr(a; l)]) — af]r(ar l”]) . aflr(a’ l’])

'Blr(a: l:]) = {log

2
D(¥g, Yi)}

of, of of;
0h(a, i) _ (i — fa)
0f; D(fa, fi)
4y (a,i,j) (fa— 1)
ofi  D(fwf)
Although the rank constraint holds,

the gradients’ magnitudes could
be significant if #.(a, i, ) is large.

| ﬂr(a' irj)

| ’B{r(a' i'j)

Triplet rank loss
tuila i) = [D(fo fi) = D(fa ;) + 6],

a'gtri(ar lr]) _ _ aftri(ar l»]) _ agtri(ar lr])

fa of, ;

aftri(a' i'j) = Z(fL o fa) ) H(ftri(a: i:j) > O)
af;

0¢i(a, i, j) _ Z(fa — f]) I(#i(a, i, j) > 0)
0fj

The gradients are zero if the triplet
satisfies the rank constraint due to
the indicator [(£(a,i,j) > 0).

* Comparison to the triplet rank loss

16



 Compared to the triplet rank loss, our loss

e Captures continuous similarities between images better,
(the triplet rank loss focuses only on partial ranks of similarities.)

* Does not require any hyperparameter,
(for the triplet rank loss the margin should be tuned carefully.)

* Does not demand L, normalization of the embedding vectors,
(such a normalization is essential for the triplet rank loss.)

e Performs much better with a low embedding dimension.
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Dense Triplet Sampling

* Main idea: Using all triplets within a minibatch

ampled neighbors

D r&) rB

Sampling all triplets by choosing every pair of neighbors

D F & B - @ D D - £ @)
\ \ \
'Blr(a, l']) 'glr(aJ l!]) 'glr(aJ l'])
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Dense Triplet Sampling

* Why not using existing sampling techniquest®”!
* They rely on binary relations between images.
* They are designed to be combined with conventional triplet losses.
* The notion of hardness is not clear in our setting.

* Our sampling strategy is well matched with the log-ratio loss.
* The log-ratio loss enables every triplet to well contribute to training.

) (a,1i,)) _ (fi — fa) 410 D(fa f1) — 1o Dy(J’a;LVi) Non-trivial even if the triplet
df; D(f,, fi) gD(fa,fj) 5 Dy()’a» }’j) complies the rank constraint

* Exploiting all triplets improves embedding performance.

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015
[7] Sampling matters in deep embedding learning, ICCV 2017 19



Experiments — Three Retrieval Tasks

* Human pose retrieval

Training Testing

e Conducted on the MPIl human pose dataset

e Similarity between images: inverse pose distances

* Application: pose-aware representation for action recognition
* Label distance between images:

2
Dy(yi,y;) = |lyi =il
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Experiments — Three Retrieval Tasks

* Human pose retrieval

Oracle Thin-slicing ResNet34

VT2

ResNet34: ImageNet

pre-trained network

Typically focuses on
objects or background
other than human poses.

Thin-slicing!®!: A previous
work on pose embedding

Often fails to address rare

human poses.
|

- 1y.down. Exhale on theway up,
/elin towards lower back.

[6] Thin-slicing for pose: Learning to understand pose without explicit pose estimation, CVPR 2016



Experiments — Three Retrieval Tasks
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Experiments — Three Retrieval Tasks

e Room layout retrieval

Training Testing

-~

Query

Retrieval results

e Conducted on the LSUN room layout dataset
* Label distance between images:

Dy(¥:,y;) = 1—mloU(y;,y;),

where y; and y; denote groundtruth room segmentations
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Experiments — Three Retrieval Tasks

e Room layout retrieval

Query

Top-3 retrievals

O 3863 Y >/ 0.842 0.816 0.841

0573 0766

Binary Tri.

0544

ImgNet

Binary Tri.: Triplet rank loss + Binary thresholding
ImgNet: ImageNet pre-trained ResNet101
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Experiments — Three Retrieval Tasks

* Caption-aware image retrieval

Training Testing
S| Agirl i =%
" || holding a
frisbee m—— A4 7 s
y Query Retrieval results '

e Conducted on the MS-COCO 2014 caption dataset
* Label distance between images:

Dy(¥:,¥) = min W(c;, ¢;) + E min W (c;, ¢;),
Cj€Yj Ci€Yi
Ci€Yi Cj€Y;j
where y; and y; are sets of 5 captions and W (+) is the WMD!®! between two captions

[8] From word embeddings to document distances, ICML 2015 -



Experiments — Three Retrieval Tasks

* Caption-aware image retrieval
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Binary Tri.: Triplet rank loss + Binary thresholding
ImgNet: ImageNet pre-trained ResNet101
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Experiments — Three Retrieval Tasks

* Caption-aware image retrieval

Top-3 retrievals
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Binary Tri.: Triplet rank loss + Binary thresholding
ImgNet: ImageNet pre-trained ResNet101
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mean nDCG

Mean pose distance

Experiments — Three Retrieval Tasks

* Quantitative performance analysis
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Caption-aware image retrieval
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Our model

-i- L(Log-ratio) + M(Dense)

\

Ve

Common baselines

== L(Triplet) + M(Binary)

-@- L(Triplet) + M(Dense)

=¥~ Margin based loss [7]
ImageNet pretrained

== Qracle

Baselines for pose retrieval
== Thin-slicing [6]
=@~ Thin-slicing + M(Dense)

Chen& Yuille
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Experiments — Three Retrieval Tasks

* Embedding dimension vs. retrieval performance

0.82;
0.801 rOur models 1 Baselines \
0.78- -@= [ (Log-ratio) + M(Dense) 128-D == | (Triplet) + M(Dense) 128-D

O

8 0.76 -@- L(Log-ratio) + M(Dense) 64-D -#=[(Triplet) + M(Dense) 64-D

-

= 0.74 =@~ L(Log-ratio) + M(Dense) 32-D == [(Triplet) + M(Dense) 32-D

© 0.

S L(Log-ratio) + M(Dense) 16-D L(Triplet) + M(Dense) 16-D
0.72 ) L )
R / L(Log-ratio) + M(Dense): Log-ratio loss + Dense triplet sampling
0.68 1, S— . L(Triplet) + M(Dense): Triplet rank loss + Dense triplet sampling

20 40 60 80 100
Number of retrievals (K)
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Experiments — Representation Learning

* Representation learning for image captioning

Caption-aware
representation
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Input Image Feature Map ~
(HXWx3) (14 x 14 x 2048) A:t
Our approach

Using the caption embedding network trained with caption similarities
as an initial visual representation for image captioning
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Experiments — Representation Learning

e Quantitative results

115.9 in ciper

Caption-aware feature + RL

4

+2.5%
i

113.1 incioer

ImageNet pretrained feature + RL

34.65 insLEu4

Caption-aware feature + RL

4

+3.5%
I

L

33.48 inBLEU-4

ImageNet pretrained feature + RL

[9] Self-critical sequence training for image captioning, CVPR 2017
[10] Bottom-up and top-down attention for image captioning and visual question answering, CVPR 2018
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Experiments — Representation Learning

e Qualitative results obtained by the top-down attention model

GT1
GT2

There are some zebras standing in a grassy field

A field with tall grass, bushes and trees, that has zebra standing in the field

Img XE
Cap XE
Img RL
Cap RL

A group of zebras grazing in a field
Two zebras are standing in a grassy field
A group of zebras are grazing in a field

A couple of zebras and a zebra standing in a field

GT1
GT2

A baseball batter swinging a bat over home plate

A baseball player swings a bat at a game

Img XE
Cap XE
Img RL
Cap RL

A baseball player holding a bat on a field
A baseball player swinging a bat on top of a field
A baseball player holding a bat on a field
A baseball player swinging a bat at a ball
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Experiments — Representation Learning

e VVisualization of attentions drawn by the Att2all2 model

baseball player  holding/swing bat

: i i i
Vol el i i z
me RL g B
B ; - Ry
Cap RL _ e B ! o o i
ég | i e =

Img RL A baseball player holding a bat on a field
Cap RL A baseball player swinging a bat at a ball
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Conclusion

* Summary
* A new framework for metric learning with continuous labels
* Various applications including visual representation learning
* Performance boost over existing approaches

* Future directions
* A better distance metric for continuous and structured labels
* A hard triplet mining technique for continuous metric learning
* More applications of semantic nearest neighbor search
* A new benchmark for continuous metric learning
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